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Abstract

While water insoluble organics are prevalent in the atmosphere, it is not clear how the
presence of such species alters the chemical and physical properties of atmospheric
aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron
Microscopy (TEM) and Aerosol Mass Spectrometry (AMS) to characterize ammonium5

sulfate particles coated with palmitic acid. Coated aerosols were generated by atom-
izing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with
palmitic acid vapor, and then flowing the mixture through an in-line oven to create in-
ternally mixed particles. The mixing state of the particles was probed using the AMS
data and images from the TEM. Both of these probes suggest that the particles were10

internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was
found that for ammonium sulfate containing ∼20 wt% palmitic acid the deliquescence
relative humidity (DRH) was the same as for pure ammonium sulfate (80±3% RH). For
particles with ∼50 wt% palmitic acid however, the mixed particles began to take up
water at relative humidities as low at 69% and continued to slowly take up water to15

85% RH without fully deliquescing. In addition to studies of water uptake, water loss
was also investigated. Here coatings of up to 50 wt% had no impact on the efflores-
cence relative humidity. These studies suggest that even if insoluble substances coat
salt particles in the atmosphere, there may be relatively little effect on the resulting
water uptake and loss.20

1. Introduction

Atmospheric aerosols are a mixture of many inorganic and organic compounds. It is
currently not clear how these combinations of compounds interact to impact the particle
growth, the cloud condensation ability of the particle and the catalytic behavior of the
particle towards heterogeneous reactions. The water uptake and loss by ammonium25

sulfate, a major component of tropospheric aerosol, has been extensively studied in
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the laboratory. Ammonium sulfate under goes a deliquescence transition at 80% RH
and an efflorescence transition at 30% RH at 273 K (Onasch et al., 1999). However,
field data show that atmospheric sulfate particles may contain 50% or more organic
material by mass (Saxena and Hildemann, 1996; Middlebrook et al., 1998; Murphy et
al., 1998). Several recent water uptake and loss studies of mixed inorganic and water-5

soluble organics have been reported (Cruz and Pandis, 2000; Peng et al., 2001; Choi
and Chan, 2002; Brooks et al., 2003; Prenni et al., 2003; Wise et al., 2003; Xu et al.,
2003). Generally these studies have shown that the addition of water-soluble organic
compounds decreases the deliquescence relative humidity. This effect would be pre-
dicted using the Gibbs-Duhem equation (Wexler and Seinfeld, 1991) and follows the10

modeling of multicomponent deliquescence (Nenes et al., 1998; Clegg et al., 2001).
However, recent fieldwork has shown that much of the organic matter present in at-
mospheric aerosols is water insoluble (Cecinato et al., 2000; Gelencser et al., 2000;
Graham et al., 2003).

The impact of insoluble organics on the properties of ammonium sulfate is much less15

well characterized than that of water-soluble organics. Fatty acids such as myristic acid,
stearic acid and palmitic acid form an important class of insoluble organics found at the
surface of marine aerosols (Mochida et al., 2002; Tervahattu et al., 2002; Tervahattu
et al., 2002; Mochida et al., 2003) and forest fire aerosols (Peterson and Tyler, 2003).
Therefore, it is possible that these compounds form a hydrophobic coating with their20

hydrophilic carboxyl groups buried in the aerosol’s core; thereby leaving the surface
of the aerosol hydrophobic and possibly impacting water uptake (Ellison et al., 1999).
While recent observations have shown the prevalence of water insoluble compounds
in atmospheric particles, there is still little information on how water insoluble organics
impact phase changes of the salt aerosols.25

Organic coatings can potentially affect aerosols in a several ways. Studies have
shown that the presence of a surface active organic on ammonium sulfate and am-
monium nitrate aerosols will decrease water evaporation rates (Shulman et al., 1997;
Cruz et al., 2000). Further a coating of surface active organics can act as a barrier for
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the reactivity and transport of trace atmospheric gases into the bulk aerosol (Niessner,
1984; Daumer et al., 1992; Folkers et al., 2003). However, the effect of the coatings on
water uptake and phase changes is not clear. Some studies have found that a coating
does impact deliquescence and water uptake (Andrews and Larson, 1993; Xiong et al.,
1998; Chen and Lee, 1999, 2001) while other studies have seen minor (Hansson et5

al., 1998) or no changes (Wagner et al., 1996).
In this study, we produce and characterize ammonium sulfate particles coated with

different thicknesses of palmitic acid and study the effect of the coating on the deliques-
cence and efflorescence relative humidities. Palmitic acid is a water insoluble sixteen
carbon n-alkanoic acid that is prevalent in the atmosphere due to its occurrence as a10

fatty acid in cell membranes. Sources include anthropogenic emissions, such as from
fossil fuel burning, meat cooking and fireplaces (Rogge et al., 1993, 1998; Cecinato
et al., 2000), marine emissions (Mochida et al., 2002; Tervahattu et al., 2002) and ter-
restrial emissions from forests and vascular plants (Gelencser et al., 2000; Pio et al.,
2001; Graham et al., 2003) and forest fires (Peterson and Tyler, 2003). Due to palmitic15

acid’s structure with a hydrocarbon hydrophobic tail and a carboxylic acid hydrophilic
head, it is a surface active organic (Seidl, 2000). It has been suggested that palmitic
acid could form a reverse micelle around a salt core (Ellison et al., 1999). Indeed, field
studies have found palmitic acid preferentially on the surface of aerosols (Tervahattu et
al., 2002; Peterson and Tyler, 2003). Our study will probe how this palmitic acid affects20

the deliquescence and efflorescence phase transitions of ammonium sulfate.

2. Experimental

A schematic of the aerosol generation system, the flowtube apparatus and the detec-
tion system is given in Fig. 1. Pure ammonium sulfate particles were produced using
an atomizer (TSI Model 3076) and a syringe pump (Harvard Apparatus 22). These25

pure particles were then passed through a diffusion dryer and a 96 wt% H2SO4/4 wt%
H2O bath to lower the relative humidity to <30% RH, so that the ammonium sulfate par-
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ticles would effloresce. Palmitic acid vapor was produced by passing hot nitrogen gas
(∼100◦C) over an oil bath containing an Erlenmeyer flask with pure palmitic acid. The
oil bath was heated to temperatures in the range 100–140◦C to vaporize the palmitic
acid. The ammonium sulfate particles and palmitic acid vapor were then mixed and
entered an in-line oven (1.17 m×1.9 cm). The temperature at the entrance of the oven5

was set to the bath temperature in deliquescence experiments and to 140◦C in efflo-
rescence experiments. H-NMR spectra were obtained to confirm that the heating of
palmitic acid to 140◦C does not decompose the acid. The temperature in the oven
was then decreased in four stages to a temperature of 60◦C, a temperature where both
ammonium sulfate and palmitic acid are solid. The oven is similar to that in Han and10

Martin (2001) and has a temperature gradient such that the palmitic acid will not be-
come highly supersaturated and homogenously nucleate, but rather will condense on
the ammonium sulfate seed particles. Pure palmitic acid particles were generated by
the same system without the added ammonium sulfate, i.e. homogeneous nucleation
of palmitic acid, at a bath temperature of 140◦C.15

Transmission Electron Microscopy (TEM) images of the particles were obtained by
impacting dry particles (RH<30%) on carbon-coated TEM grids after exiting the oven.
Particles were collected for 1–2 min and then imaged on a Phillips CM10 (FEI Inc Hills-
boro, OR) scope. The TEM images were used to obtain information on the morphology
of the particles generated using the coating oven. Additional information on particle20

size, composition and mixing state was obtained using an Aerodyne Aerosol Mass
Spectrometer (AMS; Aerodyne Inc, MA; Jayne et al., 2000; Jimenez et al., 2003).

In water uptake and loss studies, the particles passed through a temperature-
controlled flowtube system. The flowtube consisted of two 80 cm pre-tubes to equi-
librate the aerosols with water and one 80 cm observation tube equipped with sin-25

gle pass Fourier Transform Infrared (FTIR) Spectroscopy for detection of the particles’
phase. The tubes were double jacketed to allow the methanol coolant to circulate
throughout. The IR spectra were used to confirm the presence of palmitic acid and
ammonium sulfate in the flowtube and to detect the phase transitions.
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To perform deliquescence experiments, the coated aerosols were mixed with a hu-
midified nitrogen flow upon entering the flowtubes at 273 K. This humidified flow was
produced with a temperature-controlled water bubbler and the flow rate was increased
as the experiment progressed, thereby increasing RH in the tubes. For efflorescence
experiments, the mixed aerosols left the oven and were passed over a water bath to5

deliquesce before entering the flowtubes. A dry dilution flow was added and incremen-
tally increased to lower the RH until the particles were dry. The residence time of the
particles in the flowtubes was 1–3 min.

Relative humidity probes (Vaisala, Humitter 50Y) and gas phase water infrared ab-
sorption peaks were used to determine relative humidity (RH). A water calibration was10

performed by passing dry nitrogen gas over ice deposited in the flowtubes at a known
temperature. The IR gas phase water peaks were then calibrated to the known wa-
ter pressure over the ice. Using this calibration, the RH in the flowtubes during an
experiment could be determined. Most experiments used the RH probes (uncertainty
of ±3% RH) and the ice calibration was used to check the accuracy of the probes.15

Each experiment has a total error of ±3–5% RH due temperature gradients in the flow-
tubes, the probes’ uncertainty and the increments by which the relative humidity was
increased.

3. Results and discussion

3.1. Particle characterization20

Infrared spectroscopy was used to characterize the mixed aerosol system of ammo-
nium sulfate and palmitic acid as well as to probe the water uptake and loss by the
aerosols. Figure 2a–c show the dry IR spectra of pure ammonium sulfate, mixed am-
monium sulfate and palmitic acid (bath = 120◦C) and pure palmitic acid (bath = 140◦C),
respectively. Figure 2a agrees well with literature spectrum of ammonium sulfate and25

Fig. 2c agrees with the literature spectrum of pure palmitic acid. As can be seen in
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spectrum 2b, the IR spectrum of mixed particles exhibit features of both pure ammo-
nium sulfate and pure palmitic acid. However, because of overlapping bands, only the
C-H stretch of palmitic acid (2937–2840 cm−1) is clearly visible in the mixed aerosol
system. While these IR spectra show that both ammonium sulfate and palmitic acid
are present in the condensed phase, it cannot be determined from the IR spectra if the5

two components are internally or externally mixed.
Additional information on the mixing state of the particle was obtained using Trans-

mission Electron Microscopy (TEM). Example TEM images of pure palmitic acid, pure
ammonium sulfate and coated ammonium sulfate particles are shown in Fig. 3. Pure
ammonium sulfate particles are extremely volatile in the TEM electron beam and thus10

difficult to image. Before they evaporate in the beam, however, they are sub-micrometer
in size, semi-round and have distinct borders. In contrast, the pure palmitic aerosols are
larger than one micrometer, spherical and stable under the electron beam. The large
size of the pure palmitic acid particles is also evident in the IR spectrum in Fig. 2c by
the increased scattering signal for wavenumbers greater than 2000 cm−1. The mixed15

aerosols are more stable in the electron beam than the pure ammonium sulfate, al-
though less stable than the pure palmitic acid. They also appear to have a clear coating
surrounding a circular dense particle. Figures 3b and c illustrate the range of particle
morphologies observed in the TEM for the mixed particles. While these particles look
different from each other they all exhibited similar stability in the electron beam and all20

showed the presence of a coating. This combination of characteristics in the mixed
aerosol leads us to believe that most or all of the ammonium sulfate particles were
indeed coated with palmitic acid.

We also can gain information on the composition and mixing state of the aerosol
using the AMS. The AMS has a particle time of flight (PTOF) section and a quadrupole,25

allowing for simultaneous measurement of size and chemical composition of aerosols.
Figure 4a shows the mass spectrometer trace for pure ammonium sulfate aerosols.
The only peaks visible are those that can be attributed to ammonium sulfate. Figures 4b
and c display mass spectrometer traces for the mixed particles as a function of oven
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temperature. When the bath temperature is 120◦C, Fig. 4b, the mass spectrograph
contains both ammonium sulfate peaks and those attributed to organics. The organic
peaks increase when the bath temperature reaches 140◦C as in Fig. 4c. The size
distributions accompanying the mass spectra are shown in Fig. 5. It can be seen that
at the lower temperature, Fig. 5a, the coating procedure created particles where both5

the organic and the sulfate fragments covered the entire size distribution. This is a
strong indication of internally mixed particles. In contrast, at higher bath temperatures,
Fig. 5b, the bath created separate populations where the smaller ammonium sulfate
aerosols do not appear to have a significant organic component and the large palmitic
acid particles contain a lower fraction of sulfate. In this case, a partially externally mixed10

aerosol is likely present. Thus, bath temperatures used for this study were 120◦C and
below to insure internally mixed aerosols.

Using the size distributions from the AMS, the average organic weight percent for
each temperature was calculated and the values are shown in Table 1. The 100◦C
bath creates aerosols that are ∼20 wt% palmitic acid and ∼80 wt% ammonium sulfate15

while the 120◦C bath creates particles that are ∼49 wt% palmitic acid and ∼51 wt%
ammonium sulfate. Deliquescence experiments were performed on both of these com-
positions. Efflorescence experiments were conducted on ∼44 wt% palmitic acid and
∼56 wt% ammonium sulfate aerosols.

The weight percent organic determined from the AMS data was then converted into20

an average thickness of palmitic acid, assuming the palmitic acid existed as a shell
around the ammonium sulfate. This is an approximate average thickness, as the dis-
tributions are very polydisperse. The particle volume was calculated using the mean
diameter from the AMS size distribution and assuming that the particles were spheri-
cal. This total volume was translated into a total mass using the density of the particle25

obtained from the weight percent organic and ammonium sulfate assuming volume
additivity of the inorganic and organic phases. The volume of the ammonium sulfate
seed was calculated from this total mass, using the density of ammonium sulfate and
the weight percent from the AMS. The difference between the total volume and the
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ammonium sulfate volume was used to estimate the radial thickness of the coating.
The calculated coating thicknesses are summarized in Table 1. Deliquescence exper-
iments were performed on aerosols with two different thicknesses, 21 nm and 89 nm,
while efflorescence experiments were performed on aerosols with a palmitic acid thick-
ness of 65 nm. Finally, the number of monolayers of palmitic acid for each case was5

estimated using the density of palmitic acid (0.8527 g/cm3) to calculate a monolayer
coverage of 3.285×1013 molecules/cm2 assuming palmitic acid acts as a sphere and
5.006×1016 molecules/cm2 if it acts as a cylinder, where the length of the cylinder is
the carbon chain and the face of the cylinder is the carboxyl group. The number of
monolayers was calculated using this monolayer coverage and the thickness calcu-10

lated above. In all three cases, it can be seen that the palmitic acid coating was much
greater than monolayer coverage. Due to this, we inferred that the palmitic acid coating
would not be in a simple micelle arrangement, but rather a more complex system with
possible surface defects and both hydrophobic and hydrophilic areas.

While none of the above techniques alone prove that we have successfully coated15

the ammonium sulfate particles, the techniques together all make a stronger case that
the mixed particles generated contain palmitic acid and ammonium sulfate, and that
the palmitic acid forms a coating on the ammonium sulfate.

3.2. Water uptake and loss

After characterizing the particles, studies were performed to determine how ammonium20

sulfate particles coated with palmitic acid responded to increases and decreases in
water vapor. In these studies, the liquid water content of the aerosols was determined
using FTIR transmission spectroscopy. For pure ammonium sulfate and the mixed
aerosol experiments, the ratio of a condensed phase water peak (3586–3358 cm−1) to
a sulfate peak (1180–999 cm−1) was defined to be the liquid water content (LWC) of25

the aerosol. These two IR peaks were ratioed to account for dilution of the aerosols
throughout the experiment. Figure 6a shows the deliquescence curves for pure am-
monium sulfate and ∼20 wt% palmitic acid/80 wt% ammonium sulfate as a function
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of relative humidity (RH). The solid line indicates the deliquescence relative humidity
(DRH) of pure ammonium sulfate at 80% RH. Note that there is little difference be-
tween the curves as the mixed aerosol also has a DRH of approximately 80%. At the
deliquescence point, they both acquire a similar liquid water content.

Figure 6b displays the deliquescence of pure ammonium sulfate and ∼50 wt%5

palmitic acid/50 wt% ammonium sulfate. With this thicker coating of palmitic acid, a
change in water uptake is noted. First, there is no clear deliquescence point with the
mixed aerosol within the range of RH probed. While ammonium sulfate has a clear
vertical transition at 80% RH the mixed aerosol shows a more continuous water up-
take with increasing relative humidity. In addition, above 80% RH water uptake after10

deliquescence for the pure ammonium sulfate can be seen by a change in growth with
relative humidity. In contrast, for the mixed case this change in growth was not ob-
served. Without seeing these signatures, we are unable to clearly label a DRH for the
50 wt% organic case. Finally, as illustrated in Fig. 6c, an expanded view of the 50 wt%
organic aerosol, there is water uptake before 80% RH in the mixed aerosol that is not15

seen in pure ammonium sulfate. At ∼69% RH the mixed aerosols begin to show an in-
crease in LWC that continues to 85% RH, at which relative humidity the mixed aerosol
has less than 40% the liquid water content than the pure ammonium sulfate. It cannot
be determined if this decrease in water uptake would still occur if the particles were
exposed to the humidified flow for more than ∼3 min, which is the longest residence20

time available in the flowtube apparatus.
Pure palmitic acid has a solubility of 0.0007 g/100 mL H2O (Yaws, 1999) and thus

would be considered a non-deliquescent material. Figure 7 displays the results for del-
iquescence and efflorescence experiments of pure palmitic acid. In the pure palmitic
case, the liquid water band integrated was the same as above (3586–3358 cm−1).25

This water peak, however, was ratioed to a palmitic acid absorbance band (2937–
2861 cm−1). Thus, the y-axis of the pure palmitic case and the rest of the experiments
cannot be directly compared. It does not appear that palmitic acid actually deliquesces,
but more likely, we are measuring water adsorbing to the surface of the particle. Fig-
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ure 7 also shows the efflorescence results for pure palmitic acid. Within experimental
uncertainty, the efflorescence and deliquescence curves overlap and there is no hys-
terisis. Again, this is consistent with a non-deliquescent material that only takes up a
small amount of water.

To crudely compare deliquescence experiments of the mixed aerosols to the pure5

organic aerosols, the data for 50 wt% palmitic acid was reanalyzed by subtracting out
the ammonium sulfate peaks and then ratioing the water peak to the palmitic acid
peak used above. The comparison between the water uptake of the mixed and pure
palmitic acid aerosols can be seen in Fig. 8 on a logarithmic scale. The outer limits
of the data are represented by the two lines, as the absolute numbers are difficult to10

compare because the spectral subtraction produces significant noise. Compared to
the mixed aerosols, the pure palmitic acid particles are observed to take up much less
water. However, this figure illustrates that throughout a deliquescence experiment the
mixed aerosols tend to follow roughly the same uptake curve as the palmitic acid. This
suggests that the palmitic acid coating dictates water uptake prior to deliquescence.15

The difference in magnitude before 80% RH of the mixed aerosols to the pure aerosols
may be due to a difference in the surface structures of the two aerosol types. However,
this cannot be elucidated from our findings. Differences in magnitude after 80% RH
are most likely due to the ammonium sulfate core.

Efflorescence experiments were also conducted on pure ammonium sulfate and on20

the higher weight percent organic mixed aerosol. Figure 9 displays the efflorescence
data for pure ammonium sulfate and ∼45 wt% palmitic acid/55 wt% ammonium sulfate
aerosols. Ammonium sulfate has an efflorescence relative humidity of ∼31% RH and
here we find that the mixed case has an identical efflorescence relative humidity within
experimental error. Even this very large coating does not seem to impact the efflores-25

cence relative humidity. Thus, we can assume that a coating of palmitic acid does not
change the crystallization of ammonium sulfate under most atmospherically realistic
loadings of insoluble organics.
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4. Conclusions and atmospheric implications

The results of our FTIR water uptake study show that the addition of a coating that
is ∼50 wt% water insoluble organic does not impact the efflorescence of ammonium
sulfate and only slightly changes the water uptake of the aerosol, while a thinner coating
appears to have no discernable effect. In the atmosphere, where coatings such as5

these are thought to be quite common, this experiment indicates that a thin coating
of organic will not change the water uptake of ammonium sulfate particles greatly,
although a thicker coating may. Again, neither a DRH nor a water uptake curve can
be determined for the ∼50 wt% organic/50 wt% ammonium sulfate particles from our
data. If the particles have indeed stopped growing, then the DRH changes little and the10

water uptake changes greatly, while if the particles are still growing they may still take
up as much water as pure ammonium sulfate particles. This cannot be resolved in the
flowtube apparatus as the residence time is fixed at <3 min. The efflorescence results
suggest that the palmitic acid coating is not acting as heterogeneous nuclei for the
ammonium sulfate. If palmitic acid were acting as a heterogeneous nuclei we would15

expect to see an increase in efflorescence relative humidity, similar to that of solid
inclusions in ammonium sulfate aerosols (Han and Martin, 1999; Martin et al., 2001).
Rather, the palmitic acid does not change the crystallization of ammonium sulfate.

The adsorption of water at lower relative humidities indicates that aerosols with a
coating may be liquid-like under a wider range of relative humidities than pure inor-20

ganic salts. Previous studies on the cloud condensation nuclei (CCN) activation of am-
monium sulfate coated with water insoluble dioctylphthalate (Cruz and Pandis, 1998)
as well as sodium chloride and ammonium sulfate coated with water insoluble hex-
adecane (Raymond and Pandis, 2003) have shown that there is no observable effect
on CCN ability by the coatings. These water insoluble compounds themselves are25

not CCN active, but apparently have no impact on the salt activation. This is similar
to our observations that although palmitic acid is not hygroscopic a coating of it does
not appear to hinder water uptake by the ammonium sulfate. These CCN studies, to-
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gether with our hygroscopicity study, suggest that the atmospheric impact of coatings
on aerosols may be minimal.

It is not clear why the coatings are not effective in reducing water uptake, but it is
likely due to their structural arrangement around the ammonium sulfate. Molecules
such as palmitic acid that normally form reverse micelles around a hydrophilic core5

have been shown to have the hydrophobic tails collapse onto each other under vacuum
(Tobias and Klein, 1996; Allen et al., 2000). Such an arrangement would form many
surface defects and pockets. While we are not running experiments in vacuum, we
are producing an environment on the aerosol where single monolayer coverage is not
possible, and thus a simple micelle is not possible either. Experimental studies of10

water uptake by hydrophobic surfaces suggest that water uptake does indeed occur
on these surfaces, preferentially on the defect sites (Weingartner et al., 1997; Thomas
et al., 1999; Rudich et al., 2000; Linderoth et al., 2003; Persiantseva et al., 2004).
These studies suggest the water adsorption on these irregularities of the surface are
reversible and adsorb through small water clusters. The reversible nature of the water15

uptake was seen in the pure palmitic acid aerosols, and while it is not possible to know
how the water adsorbed to the surface, the total amount of water adsorbed is small.
However, if a small amount of water does adsorb to the surface, it can then diffuse
through the coating or through coating defects and activate the inorganic core, leading
to no difference in water uptake. In such a case the water uptake and loss would be20

dictated by diffusion through the coating layer only. In order for the water to diffuse
through a coating of 100 nm in the time allowed in our flowtubes, the coating would
have to have a diffusion constant of at least 5×10−13 cm2/s; similar to that of a solid.
As this diffusion constant is only a lower limit, it suggests that even as an obstacle
to water diffusion through to the inorganic core, the coating has little impact on water25

uptake.
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A.: NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds, J.
Atmos. Chem., 31, 321–346, 1998.

Jayne, J., Leard, D., Zhang, X., Davidovits, P., Smith, K., Kolb, C., and Worsnop, D.: Devel-
opment of an aerosol mass spectrometer for size and composition analysis of submicron20

particles, Aerosol. Sci. Technol., 33, 49–70, 2000.
Jimenez, J. L., Jayne, J. T., Shi, Q., C. Kolb, E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H.,

Flagan, R. C., Zhang, X. F., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol
sampling using the Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res.-A, 108(D7),
8424, doi:10.1029/2001JD000660, 2003.25

Linderoth, T. R., Zhdanov, V. P., and Kasemo, B.: Water condensation kinetics on a hydrophobic
surface, Phys. Rev. Lett., 90, 15, art. no. 156103, 2003.

Martin, S., Han, J., and Hung, H.: The size effect of hematite and corundum inclusion on
the efflorescence relative humidities of aqueous ammonium sulfate particles, Geophys. Res.
Lett., 28, 13, 2691–2694, doi:10.1029/2001GL013120, 2001.30

Middlebrook, A. M., Murphy, D. M., and Thomson, D. S.: Observations of organic material in in-
dividual marine particles at Cape Grim during the First Aerosol Characterization Experiment
(ACE 1), J. Geophys. Res., 103(D13), 16 475–16 483, 1998.

2061

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/2047/acpd-5-2047_p.pdf
http://www.atmos-chem-phys.org/acpd/5/2047/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 2047–2074, 2005

Palmitic acid coating
on ammonium sulfate

R. M. Garland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Mochida, M., Kawamura, K., Umemoto, N., Kobayashi, M., Matsunaga, S., Lim, H.-J., Turpin,
B., Bates, T., and Simoneit, B.: Spatial distribution of oxygenated organic compounds (dicar-
boxylic acids, fatty acids, and levoglucosan) in marine environments over the western Pacific
and off the coast of East Asia: Continental outflow of organic aerosols during the ACE-Asia
campaign, J. Geophys. Res., 108(D23), doi:10.1029/2002JD003249, 2003.5

Mochida, M., Kitamore, Y., Kawamura, K., Nojiri, Y., and Suzuki, K.: Fatty acids in the marine
atmosphere: Factors governing their concentration and evaluation of organic films on sea-
salt particles, J. Geophys. Res., 107, 4325, doi:10.1029/2001JD001278, 2002.

Murphy, D. M., Thomson, D. S., and Mahoney, M. J.: In situ measurements of organics, mete-
oritic material, mercury, and other elements in aerosols at 5 to 19 kilometers, Science, 282,10

5394, 1664–1669, 1998.
Nenes, A., Pandis, S., and Pilinis, C.: ISORROPIA:A new thermodynamic equilibrium model for

multiphase multicomponent inorganic aerosols, Aquatic Geochemistry, 4, 123–152, 1998.
Niessner, R.: Coated particles: preliminary results of laboratory studies on interaction of am-

monia with coated sulfuric acid droplets or hydrogensulfate particles, The Science of the15

Total Environment, 36, 353–362, 1984.
Onasch, T. B., Siefert, R. L., Brooks, S. D., Prenni, A. J., Murray, B., Wilson, M. A., and Tolbert,

M. A.: Infrared spectroscopic study of the deliquescence and efflorescence of ammonium
sulfate aerosol as a function of temperature, J. Geophys. Res., 104(D17), 21 317–21 326,
1999.20

Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic properties of dicarboxylic and mul-
tifunctional acids: Measurements and UNIFAC predictions, Environ. Sci. Technol., 35, 22,
4495–4501, 2001.

Persiantseva, N. M., Popovicheva, O. B., and Shonija, N. K.: Wetting and hydration of insoluble
soot particles in the upper troposphere, J. Environ. Monitoring, 6, 12, 939–945, 2004.25

Peterson, R. and Tyler, B.: Surface composition of atmospheric aerosol: individual particle
characterization by TOF-SIMS, Applied Surface Science, 203–204, 751–756, 2003.

Pio, C., Alves, C., and Duarte, A.: Organic components of aerosols in a forested are of central
Greece, Atmos. Environ., 35, 389–401, 2001.

Prenni, A. J., De Mott, P. J., and Kreidenweis, S. M.: Water uptake of internally mixed particles30

containing ammonium sulfate and dicarboxylic acids, Atmos. Environ., 37, 30, 4243–4251,
2003.

Raymond, T. and Pandis, S.: Formation of cloud droplets by multicomponent organic particles,

2062

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/2047/acpd-5-2047_p.pdf
http://www.atmos-chem-phys.org/acpd/5/2047/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 2047–2074, 2005

Palmitic acid coating
on ammonium sulfate

R. M. Garland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

J. Geophys. Res., 108, 4469, doi:10.1029/2003JD003503, 2003.
Rogge, W., Hildemann, L., Mazurek, M., Cass, G., and Simoneit, B.: Sources of fine organic

aerosol: 9. Pine,oak, and synthetic log combustion in residential fireplaces, Environ. Sci.
Technol., 32, 13–22, 1998.

Rogge, W., Mazurek, M., Hildemann, L., Cass, G., and Simoneit, B.: Quantification of urban or-5

ganic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos.
Environ., 27A, 8, 1309–1330, 1993.

Rudich, Y., Benjamin, I., Naaman, R., Thomas, E., Trakhtenberg, S., and Ussyshkin, R.: Wet-
ting of hydrophobic organic surfaces and its implications to organic aerosols in the atmo-
sphere, J. Phys. Chem. A, 104, 22, 5238–5245, 2000.10

Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical
review of the literature and application of thermodynamics to identify candidate compounds,
J. Atmos. Chem., 24, 57–109, 1996.

Seidl, W.: Model for a surface film of fatty acids on rain water and aerosol particles, Atmos.
Environ., 34, 28, 4917–4932, 2000.15

Shulman, M. L., Charlson, R. J., and Davis, E. J.: The effects of atmospheric organics on
aqueous droplet evaporation, J. Aerosol. Sci., 28, 5, 737–752, 1997.

Tervahattu, H., Hartonen, K., Kerminem, V.-M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck,
A. F., and Vaida, V.: New evidence of an organic layer on marine aerosols, J. Geophys. Res.,
107(D7), doi:19.1029/2000JD000282, 2002.20

Tervahattu, H., Juhanoja, J., and Kupiainen, K.: Identification of an organic coating on marine
aerosol particles by TOF-SIMS, J. Geophys. Res., 107(D16), doi:10.1029/2001JD001403,
2002.

Thomas, E., Rudich, Y., Trakhtenberg, S., and Ussyshkin, R.: Water adsorption by hydrophobic
organic surfaces:Experimental evidence and implications to the atmospheric properties of25

organic aerosols, J. Geophys. Res., 104(D13), 16 053–16 059, 1999.
Tobias, D. J. and Klein, M. L.: Molecular dynamics simulations of a calcium carbonate calcium

sulfonate reverse micelle, J. Phys. Chem., 100, 16, 6637–6648, 1996.
Wagner, J., Andrews, E., and Larson, S. M.: Sorption of vapor phase octanoic acid onto deli-

quescent salt particles, J. Geophys. Res., 101, 19 533–19 540, 1996.30

Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties of carbon and
diesel soot particles, Atmos. Environ., 31, 15, 2311–2327, 1997.

Wexler, A. and Seinfeld, J. H.: Second generation inorganic aerosol model, Atmos. Environ.,

2063

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/2047/acpd-5-2047_p.pdf
http://www.atmos-chem-phys.org/acpd/5/2047/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 2047–2074, 2005

Palmitic acid coating
on ammonium sulfate

R. M. Garland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

25A, 12, 2731–2748, 1991.
Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert, M. A.: Hygroscopic

growth of ammonium sulfate/dicarboxylic acids, J. Geophys. Res.-A, 108(D20), 4638,
doi:10.1029/2003JD003775, 2003.

Xiong, J. Q., Zhong, M., Fang, C., Chen, L. C., and Lippmann, M.: Influence of organic films on5

the hygroscopicity of ultrafine sulfuric acid aerosol, Environ. Sci. Technol., 32, 3536–3541,
1998.

Xu, Q., DeWitte, M., and Sloan, J. J.: The effect of formic acid on the deliquescence of model
sea-salt aerosol particle, Atmos. Environ., 37, 911–919, 2003.

Yaws, C.: Chemical Properties Handbook, New York, McGraw-Hill, 1999.10

2064

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/2047/acpd-5-2047_p.pdf
http://www.atmos-chem-phys.org/acpd/5/2047/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 2047–2074, 2005

Palmitic acid coating
on ammonium sulfate

R. M. Garland et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Table 1. Characterization of palmitic acid (PA) coating.

Bath/oven Wt% organic* Thickness of # of monolayers PA assuming,
temp org. coating sphere cylinder

100/100◦C 18.8±5.0% 21.2 nm 129 9
120/120◦C 48.8±3.3% 89.1 nm 543 36
100–120/140◦C 43.5±6.7% 65.3 nm 398 26

* The remaining mass is ammonium sulfate
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Fig. 1. Experimental set-up. Aerosols are produced and then sent to either the flowtube system
for FTIR analysis or the Aerosol Mass Spectrometer for chemical and size analysis. For TEM
analysis the particles are collected after they exit the oven.
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Fig. 2. Representative IR spectra of a) pure ammonium sulfate; b) 48.8 wt% palmitic
acid/51.2 wt% ammonium sulfate and c) pure palmitic acid; * indicates CO2 absorption bands
subtracted out; the bands are an artifact from the coating method.
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a) b) d)

300 nm3000 nm 100nm

c)

100nm

Fig. 3. TEM images of a) pure palmitic acid; b) and c) mixed ammonium sulfate/palmitic acid;
and d) pure ammonium sulfate. Note the differences in the size bars.
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Fig. 4. AMS MS traces of ammonium sulfate/palmitic acid aerosol. The green indicate organic
peaks and the red are sulfate peaks, A) pure ammonium sulfate; B) bath set to 120◦C; and C)
bath set to 140◦C.
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Fig. 5. TOF size distributions of A) palmitic acid bath at 120◦C and B) bath at 140◦C where the
red is the ammonium sulfate trace and the green line is the organic trace.
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of graph B to show early water uptake by 48.8 wt% organic aerosols.
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Fig. 7. Deliquescence (blue circles) and efflorescence (purple squares) of pure palmitic acid at
273 K.
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Fig. 8. Mixed palmitic acid (50 wt%) and ammonium sulfate (50 wt%) aerosols (green lines)
and pure palmitic acid aerosols (blue lines) using same palmitic acid and condensed water
peaks to calculate the liquid water content (LWC). The two lines represent the outer limits of
the data; thus all the data lies between the two lines.
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Fig. 9. Efflorescence of pure ammonium sulfate (red triangles) and 43.5 wt% palmitic acid
(green circles).
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